
3.3. Detector SystemsDetector Systems

♦ This chapter describes the CANDU detector systems.



3.13.1 ZoneZone--Control DetectorsControl Detectors

♦ To vary the amount of water in the zone-control 
compartments, 

♦ the Reactor Regulating System utilizes the readings 
of detectors associated with the zone controllers.

♦ These are fast-response platinum detectors, placed 
interstitially between fuel channels.



3.13.1 ZoneZone--Control DetectorsControl Detectors
♦ There is one detector (plus one spare) for each zone-

control compartment.  
♦ Each detector is located close to the midpoint of the 

zone-control compartment to which it is associated 
(see Figure 3.1).



3.13.1 ZoneZone--Control DetectorsControl Detectors

♦ To determine changes required in the water fills of 
the various compartments, 

♦ the RRS compares the 14 instantaneous detector 
readings, φi, 

♦ with a set of reference readings, φi
ref, corresponding 

to the desired power distribution at full power.



3.13.1 ZoneZone--Control DetectorsControl Detectors

♦ In the bulk-control function, 
♦ the average of the 14 readings φi is used as the 

indicator of current power, 
♦ and the water fills in all compartments are uniformly 

increased or decreased 
♦ to move the reactor power down or up to the desired 

power.  
♦ Bulk control is exercised automatically by the RRS 

every half second.



3.13.1 ZoneZone--Control DetectorsControl Detectors
♦ In the spatial-control function, 
♦ the relative values of the φi are compared to the 

reference relative values
♦ to determine the reactor zones in which the flux is 

low (i.e., in which power should be raised), 
♦ and those in which it is high (i.e., in which power 

should be reduced). 



3.13.1 ZoneZone--Control DetectorsControl Detectors

♦ The water fills are then moved differentially.  
♦ In zones where power is to be increased the water 

level is lowered, 
♦ and where power is to be decreased the water level is 

raised.  
♦ The RRS exercises the spatial-control function 

automatically every 2 seconds.



3.13.1 ZoneZone--Control DetectorsControl Detectors

♦ Because the zone-control detectors provide 
essentially �point� readings in the core 

♦ (the detectors are 3 lattice pitches long but span a 
very small part of each zone), 

♦ it is legitimate to ask whether they represent fairly 
the zones to which they are associated.  

♦ In order to ensure that the readings used by the RRS 
do reflect zone-average values, 

♦ the zone detectors are calibrated every two minutes 
to zone fluxes obtained by the on-line flux-mapping 
program (see Section 3.3).



3.23.2 NeutronicNeutronic Protection SystemProtection System

♦ CANDU reactors are equipped with protection 
systems which detect an emergency situation 

♦ and actuate the safety system(s) discussed in the 
previous Section.  

♦ The CANDU-6 neutronic protection systems are 
described here.



3.23.2 NeutronicNeutronic Protection SystemProtection System
♦ There is a separate neutronic protection system for 

each of the two shutdown systems.  
♦ Each protection system is triplicated and consists of 

out-of-core ion chambers 
♦ and in-core self-powered detectors.  



3.23.2 NeutronicNeutronic Protection SystemProtection System

♦ Triplication means that there are three separate 
�logic� (or �safety�) channels for each protection 
system.  

♦ These channels are labelled D, E, and F for SDS-1 
♦ and G, H, and J for SDS-2.  
♦ In each protection system, it suffices that two of the 

three logic channels be �tripped� for the 
corresponding shutdown system to be actuated.  



3.23.2 NeutronicNeutronic Protection SystemProtection System
♦ There are three ion chambers in each protection 

system, one per logic channel.  
♦ The ion chambers are located at the outside surface 

of the calandria (see Figure 3.2).  
♦ Each ion chamber trips its logic channel when the 

measured rate of change of the logarithm of the flux, 
♦ i.e. the quantity  
♦ exceeds a pre-determined setpoint (e.g. 10% per 

second, i.e., 0.10 s-1, for SDS-1 in the CANDU 6).

d n
dt
l φ



3.23.2 NeutronicNeutronic Protection SystemProtection System
♦ There are also a number of fast-response (platinum 

or inconel) in-core detectors in each protection 
system: 

♦ 34 for SDS-1, located in vertical assemblies (see 
Figures 3.3a, 3.3b and 3.3c), 

♦ and 24 for SDS-2, located in horizontal assemblies 
(see Figure 3.4). 



3.23.2 NeutronicNeutronic Protection SystemProtection System
♦ The detectors are distributed among the various 

logic channels, 
♦ so that channels D, E and F contain 11 or 12 

detectors each, 
♦ while channels G, H, and J contain eight each. 



3.23.2 NeutronicNeutronic Protection SystemProtection System

♦ The detectors trip the logic channels on high neutron 
flux: 

♦ when the reading of any one detector reaches a pre-
determined setpoint, the logic channel to which it is 
connected is tripped.  

♦ Because the in-core detectors are designed to protect 
the reactor against high local flux, 

♦ the in-core-detector system is sometimes referred to 
as the regional-overpower-protection (ROP) system.



3.23.2 NeutronicNeutronic Protection SystemProtection System
♦ The setpoints of the in-core detectors are determined 

by an extensive analysis of hypothetical loss-of-
regulation (LOR) accidents.  

♦ The analysis involves the calculation of hundreds of 
different flux shapes which can apply in the reactor.



3.23.2 NeutronicNeutronic Protection SystemProtection System

♦ The ROP setpoints are designed to protect against 
critical values of channel power being reached; 

♦ the current criterion for critical channel power is 
fuel dryout.  

♦ The setpoints must also ensure the efficacy of the 
shutdown systems 

♦ in arresting the power pulse which follows a 
hypothetical loss-of-coolant accident.



3.23.2 NeutronicNeutronic Protection SystemProtection System

♦ In summary, there are two separate ways in which a 
protection-system logic channel can be tripped: 

♦ on a high rate of log neutron flux at the 
corresponding ion chamber, and

♦ on high neutron flux at any one detector belonging to 
the logic channel.  



3.23.2 NeutronicNeutronic Protection SystemProtection System

♦ A shutdown system is actuated whenever two of the 
three corresponding logic channels are tripped.  

♦ The triplicated tripping logic described here is 
shown schematically in Figure 3.5.  

♦ The triplication assures an extremely high reliability 
of shutdown-system actuation under accident 
conditions.

♦ The triplication also allows on-line testing of the 
electronics in the logic channels



3.33.3 FluxFlux--Mapping SystemMapping System

♦ The CANDU 6 is provided with a flux-mapping 
system 

♦ to synthesize the 3-dimensional flux distribution in 
the reactor from in-core detector readings.  

♦ The system consists of 102 vanadium detectors 
placed at various positions in the core (see Figure 
3.6).  

♦ Each detector is one lattice pitch long.



3.33.3 FluxFlux--Mapping SystemMapping System
The flux-mapping procedure consists of assuming the 

3-dimensional flux distribution can be written as a 
linear combination of a number of basis functions or 
flux modes, 

♦ i.e. that the thermal flux at any point  in the core, (r), 
can be expressed as a linear combination of flux 
modes ψn(r):

(3.1)

♦ where m = number of modes and An is the amplitude 
of mode n.
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3.33.3 FluxFlux--Mapping SystemMapping System
♦ Using this linear expansion, the mode amplitudes An

are determined 
♦ by a least-squares fit of the calculated fluxes at the 

102 detectors to the measured fluxes.  
♦ For a detector d at position rd, the mapped flux is, 

from Eq. (3.1):

(3.2)

♦ and this can be compared to the measured flux at the 
detector, Fd.
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3.33.3 FluxFlux--Mapping SystemMapping System
♦ The flux-mapping procedure determines the 

amplitudes An by minimizing the sum of squares of 
differences between the mapped and measured 
fluxes, i.e. minimizing

(3.3)

♦ where the wd are chosen weights.
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3.33.3 FluxFlux--Mapping SystemMapping System

♦ Once the amplitudes have been evaluated, 
♦ the flux at any point in the reactor can be calculated 

very easily from Eq. (3.1).  
♦ Thus, the 3-dimensional flux and power distributions 

in the core can be derived.  
♦ The flux-mapping procedure is very quick.



3.33.3 FluxFlux--Mapping SystemMapping System

♦ The flux modes ψn(r) used in flux mapping consist in 
the first instance of a number (~15) of 

♦ pre-calculated harmonics of the neutron diffusion 
equation.  

♦ These harmonics represent various possible global 
perturbations of the flux distribution (see Figure 
3.7).



3.33.3 FluxFlux--Mapping SystemMapping System

♦ For situations in which the reactor is operated with 
mechanical control absorbers in-core or adjusters 
out-of-core, 

♦ the harmonics are complemented by a number of 
�device modes� which represent the more localized 
perturbations due to device movement.



3.33.3 FluxFlux--Mapping SystemMapping System

♦ The flux-mapping procedure is carried out 
automatically in the on-line computer every two 
minutes.  

♦ It provides the mapped values of average zonal flux 
to the regulating system.  

♦ These zonal fluxes are used to calibrate the zone-
control detectors, 

♦ to ensure that the readings of the zone detectors 
faithfully represent the overall flux distribution in 
the reactor.



3.33.3 FluxFlux--Mapping SystemMapping System

♦ Flux mapping can also be done �off line�, 
♦ using recorded flux measurements at the detectors 
♦ corresponding to any desired time in the reactor 

history.
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